Markov’s Inq.
P[X≥t]≤tE[X]Proof:
E[X]=i=1∑+∞i⋅pX(i)=i=1∑ni⋅pX(i)+i=n∑+∞i⋅pX(i)≥i=n∑+∞i⋅pX(i)≥ni=n∑+∞pX(i)=nP[X≥n]
Chebyshev’s Inq.
P[∣X−μ∣≥t]≤t2σ2Proof:
P[X≥n]P[X2≥n2]P[(X−μ)2≥n2]=P[∣X−μ∣≥n]≤nE[X]≤n2E[X2]≤n2E[(X−μ)2]=n2σ2
Chernoff’s Inq.
P[X≥t]≤eλtE[eλX]Proof:
P[X≥t]P[X≥t]≤tE[X]=P[λX≥λt]=P[eλX≥eλt]≤eλtE[eλX]
Chernoff’s Inq. for Sums
P[Xn≥t]≤(eλtE[eλX1])nProof:
P[Xn≥t]≤enλtE[enλXn]≤enλtE[eλ∑i=1nXi]=enλt∏i=1nE[eλXi]=enλt∏i=1nE[eλX1]=(eλtE[eλX1])n
Reference